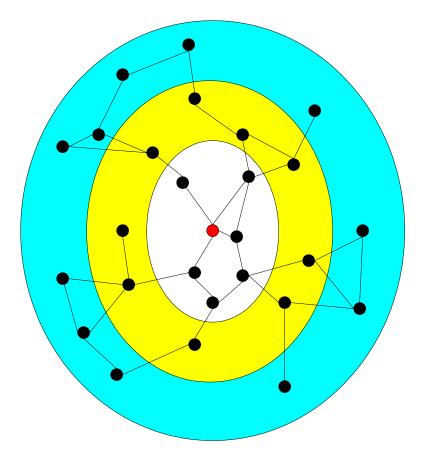


Ad Hoc Networks - Applications and System Design

Prof Sanjay Srivastava

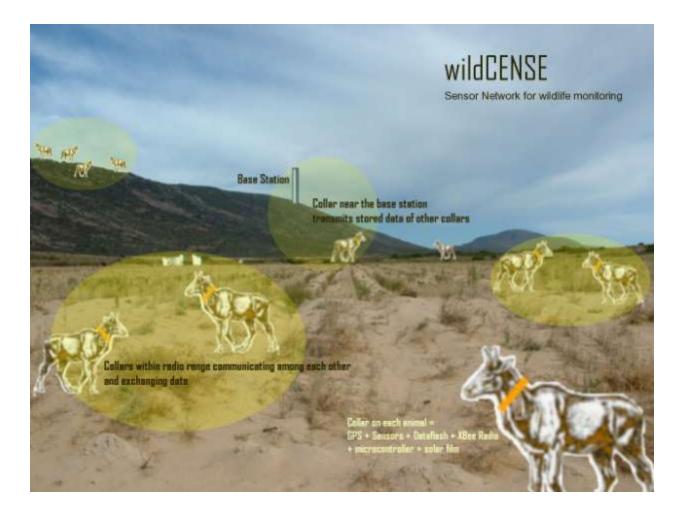

DA-IICT, Gandhinagar

Two day workshop on Ad Hoc Networks: Design, Applications, and Models. DAIICT Oct 2-3, 2009

Ad Hoc Network - Introduction

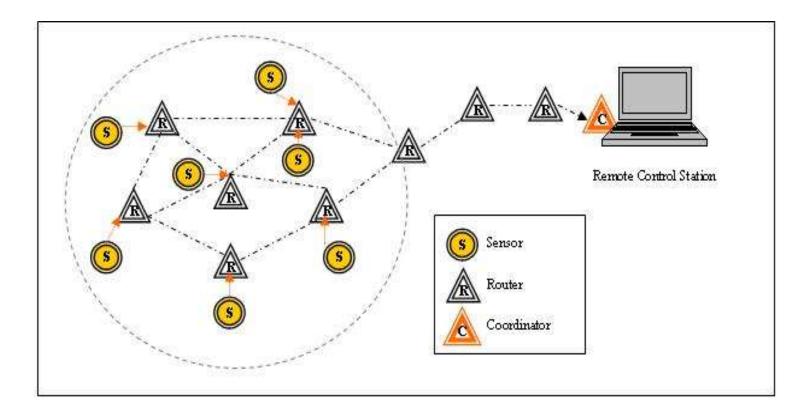
- •Nodes also act as routers
- •Mobile
- Power-limited
- •Peer-to-peer

Ad Hoc Network Node - Introduction

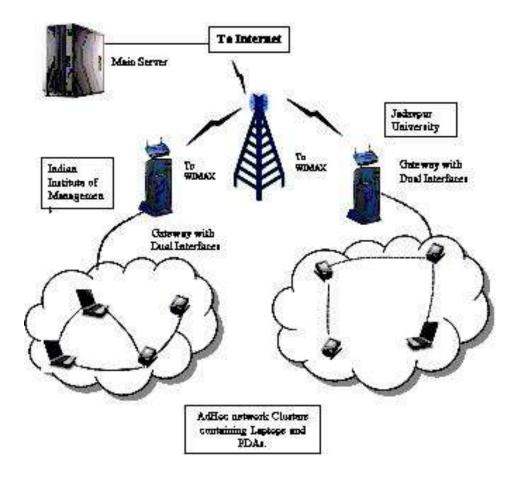

- •Radio Receiver and Transmitter
- •Power Supply
- Mobility Module
- Sensing Module(s)
- Controller/Processor
 - •Message Processing, Forwarding
 - •Network Control Tasks Routing

Ad Hoc Network Applications

- •Wild Life Monitoring
- Precision Agriculture
- •Disaster Management Support
- •Smart Vehicle, Transport
- Defense Applications
- Pervasive Application


Wild Life Monitoring – WildCENSE

Courtesy: Prof Prabhat Ranjan, DAIICT

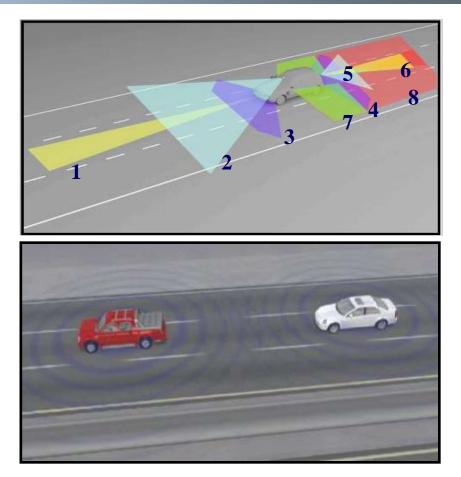

DAIICT Networks Workshop '09

Precision Agriculture using sensor based Wireless Mesh Networks

Courtesy: IIM, Calcutta

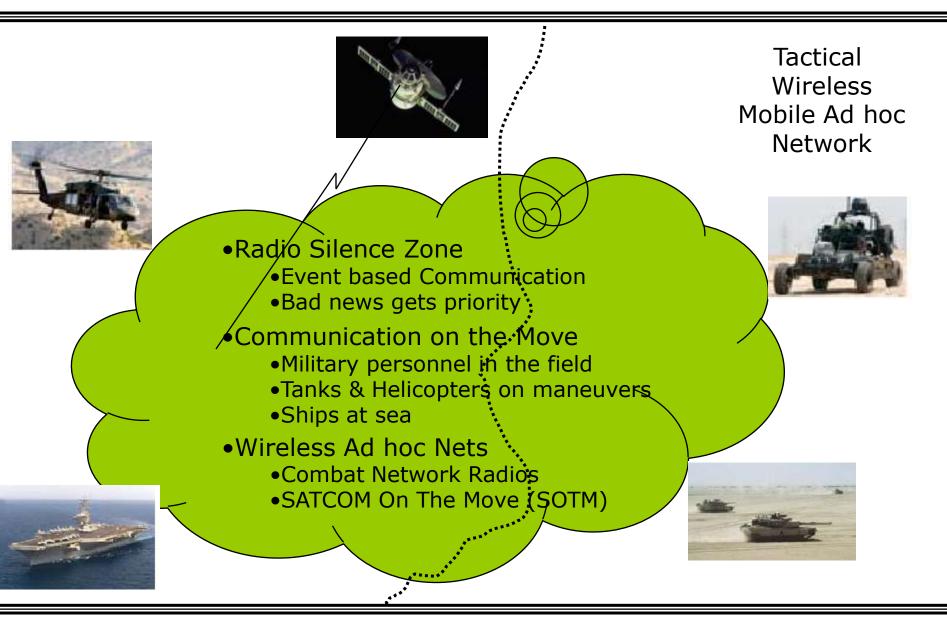
Secure Decentralized Disaster Management

Courtesy: IIM, Calcutta

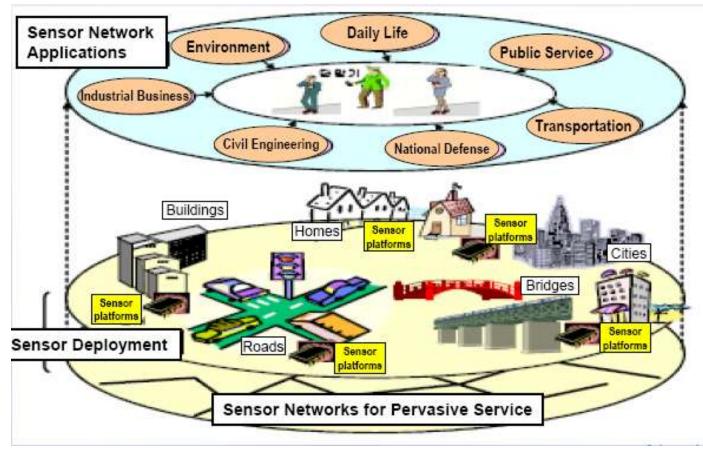

Vehicular Area Networks – Collision Warning

•Traditional sensors are not very effective

•Limited range, Limited Field


•Vehicle Mounted Sensors and inter-vehicle communication network can be very effective

•Does not depend on road based devices



Courtesy: HRL Lab. ACM VANET 2006

Military Network Requirements

Pervasive Computing - Sensor Network

Excerpted from Ubiquitous City Plans, Korea 2005

Ad Hoc Networks - Technology

- •Embedded Devices
 - Sensors
 - •Wearable Computers
 - •Cell phones, Smart PDAs
- Connectivity
 - •Wireless cellular
 - •Wireless Ad Hoc Networks
- Mobility
 - Nomadic
 - Vehicular

Schematic of a Sensor Node

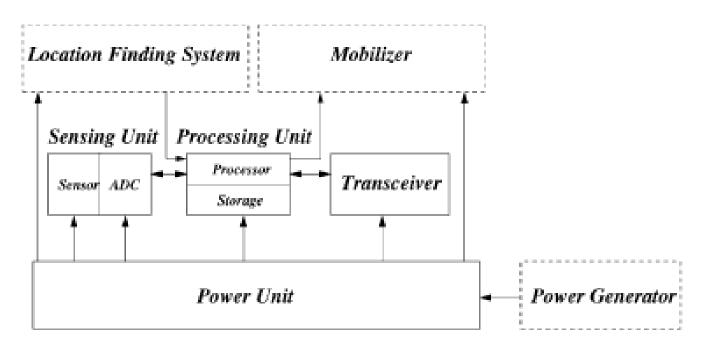


Fig. 1. The components of a sensor node.

Wireless Bands, Data Rates

•GSM phone 9.6 Kbps •GPRS typical 28Kbps, theoretical 172Kbps max

•Wireless LAN IEEE 802.11b (WiFi) 200 m range •2.4 Ghz band: 2-54 Mbps

Bluetooth 10 m range2.4 Ghz band: 1 data (700 kbps) & 3 voice channels

•UMTS – 3G mobile
•114 kbps (vehicle), 384 Kbps (pedestrian), 2 Mbps (stationary)

Ad Hoc Sensor Networks

- •Ad Hoc Network without Infrastructure
- •Sensor nodes with sensing and communication
 - •Temperature, light, pollution
 - •Seismic
 - Acceleration etc

•Sensor Network – Embedded devices with both sensing and communication capabilities

•Can form peer to peer network

Ad Hoc Application Architecture

Ad Hoc Apps	Ad Hoc Apps	Ad Hoc Apps	Ad Hoc Apps
Application Framework			
P2P Transport		Location/Context	
Ad Hoc Network Control (Topology, Routing,)			
Low Level Controls (Transmission, power,)			

Ad Hoc Network Design -Factors

- •Fault Tolerance
- Scalability
- Hardware Constrains
- •Network Topology Deployment Issues
- Transmission Media
- Power Consumption

Ad Hoc Network Design Issues - Common

Node Level

- Transmission Characteristics
- Antenna Design
- Power Conservation Issues
- Sharing of Medium

Network Level

- •Network Topology Control
- •Routing Issues
- Load Balancing
- Security and Privacy

Design Issues - WildCENCE

Node Level

- •Weight
- Choice of sensors
- •Radio Range
- Power Consumption
- Robustness Environment

Network

- •Data Exchange and Aggregation
 - •Data exchange among animals, aggregation at each node
- •Data Flushing
 - •Difficult problem

Applications of VANETs

•Typical Applications:

•Collision Avoidance,

- Traffic Monitoring, Pollution Monitoring
- •Electric Recharge Management

Intelligent Transport System (ITS)

Inter-Vehicle Communication (IVC) Apps
Collision avoidance
Roadside-to-Vehicle Communication (RVC) Apps

Traffic Monitoring

Design Issues - VANETs

Message Latency

•For effective collision avoidance, latency must be very low.

Of the order of ~1s

•Message Priority

•For implementing real time applications

Security and Data Integrity

•For prevention of mischief

Pervasive Computing - Applications

•Embedded Network Devices + Mobility + Intelligent Environment => Pervasive Computing

- •Distributed Object Finder
- Embedded Social Network
- Campus Infrastructure Planning
- Group Tracking

Pervasive Computing - Context

Current location

- location detection eg using GPS
- User activity
 - •Walking, driving etc.
- Ambient environmenttheatre, Mall, Meeting etc
- Local resourcesDevice capabilities

Pervasive Computing Framework

•System

Handsets with p2p capabilities – bluetooth or wifi
Iphone, Gphone, other smart handsets

•Sensing – GPS, Camera, Accelerometer ...

•Developer Environment – Symbian OS, JavaMobile, Windows Mobile

Social Network

•Community – academic campus

- p2-p cooperative network
- Server for collating information
- applications

Pervasive Computing – Design Issues

- Social Issues
 - Cooperation and Incentives
- Privacy
 - Notion of K-anonymity
- •Security and Authentication
 - Malicious Behaviour

End of Part I

Questions?

Questions that come to mind? - Nodes

•Behaviour of transmitter, receiver

•Medium, environment, other emitters

•Radio range as a function of transmitted power r(p)

•How to conserve energy of the node

•Embedded controller architecture

•Real time OS issues

•Distributed processing of date

•Very cheap nodes

•At the cost of high failure rate?

Questions that come to mind? - Topology

Topology Issues

- •Connectivity is a function of transmission power (goes up)
- •Routing performance is a function of connectivity (improves)
- •Throughput (think contention) (deteriorates)
- •Node Life time (goes down with power)
- •Deployment Flexibility (connectivity is controllable)

Questions that come to mind? - Routing

Routing Issues

- Mobility Induced problems
 - •Links break, Neighbourhood changes
- •Reduce overhead or improve performance
 - •Performance
 - •low delay
 - •high delivery ratio
 - Robustness to mobility
- •Routing + Data Aggregation Tree

Questions that come to mind? - Pervasive Computing

- Context Generation
- Context obfuscation
- Cooperation